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Evolving the neuroendocrine physiology
of human and primate cooperation
and collective action

Benjamin C. Trumble†, Adrian V. Jaeggi‡ and Michael Gurven

Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA 93106, USA

While many hormones play vital roles in facilitating or reinforcing coopera-

tive behaviour, the neurohormones underlying competitive and cooperative

behaviours are largely conserved across all mammals. This raises the ques-

tion of how endocrine mechanisms have been shaped by selection to

produce different levels of cooperation in different species. Multiple com-

ponents of endocrine physiology—from baseline hormone concentrations,

to binding proteins, to the receptor sensitivity and specificity—can evolve

independently and be impacted by current socio-ecological conditions or

individual status, thus potentially generating a wide range of variation

within and between species. Here, we highlight several neurohormones

and variation in hormone receptor genes associated with cooperation, focus-

ing on the role of oxytocin and testosterone in contexts ranging from

parenting and pair-bonding to reciprocity and territorial defence. While

the studies reviewed herein describe the current state of the literature with

regard to hormonal modulators of cooperation and collective action, there

is still a paucity of research on hormonal mechanisms that help facilitate

large-scale collective action. We end by discussing several potential areas

for future research.
1. Introduction
Humans and to some extent other primates engage in various forms of

cooperation and collective action ranging from parenting and pair-bonding

to cooperative food production and sharing, territorial defence and warfare

[1–3], with some of these behaviours going beyond the reaction norm of

many mammals in terms of scale and coordination. Yet, the neurohormones

underlying competitive and cooperative behaviours in vertebrates are largely

conserved [4], raising the question of how endocrine mechanisms are shaped

by selection to help modulate these extensive cooperative behaviours.

Multiple components of endocrine physiology can evolve independently

and be impacted by current socio-ecological conditions or individual status

(figure 1), thus potentially generating a wide range of variation within and

between species. This variation can inform ultimate function as individual or

species differences in baseline hormone levels, acute reactivity or receptor dis-

tributions may reflect exaptations, different adaptive strategies, trade-offs or

constraints [5,6], all of which could lead to individual differences in cooperation

and collective action.

To illustrate how endocrine mechanisms evolved to facilitate human and

primate cooperation, we focus on the contexts of cooperation typical of the

‘human adaptive complex’, i.e. the evolved human life history and social organ-

ization [7,8], and their primate analogues: parenting, pair-bonding, reciprocity

and collective action. We focus our discussion on the role of two hormones in

these contexts in depth, oxytocin (OT) and testosterone. We also highlight other

neurohormones and variation in hormone receptor genes that have been associ-

ated with cooperation. In doing so, we aim to provide a roadmap for

identifying shared and derived mechanisms underlying human and primate
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Figure 1. Critical areas to examine for the evolution of hormonal – behaviour interactions associated with cooperation. Evolution could result in higher circulating
hormone levels to saturate receptors through: (a) higher baseline levels of hormones, (b) lower levels of binding proteins resulting in higher ‘free’ hormone levels
and/or (c) larger acute increases in hormone levels. Neural responses to circulating hormones could be impacted by (d ) greater hormone receptor density, (e) greater
sensitivity of receptors to a hormone, ( f ) higher specificity of receptors for a specific hormone and (g) location and connectivity of the receptors to critical brain
areas. (Online version in colour.)
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cooperation that can give insights into the ecological and

social selection pressures that produced them [6] (figure 1).
(a) Hormones and behaviour
In order for a hormone to directly impact behaviour, it must

bind to receptors in critical regions in the brain (or other

target tissues). Thus, while measuring circulating hormone

levels is an excellent first step, it is crucial to also consider the

hormonal receptors that turn chemical messages into electrical

signals [4]. While most hormones are measured peripherally

(outside of the brain), concentrations of hormones vary within

the brain, and not all circulating hormones can enter brain

tissue. The brain is protected by a selectively permeable set

of capillary tissues called the blood–brain barrier, which pro-

tects cerebral tissue by only allowing certain substances in

circulating blood to pass. Behaviour can only be directly influ-

enced by hormones small enough to cross the blood–brain

barrier (e.g. steroids), or that are produced locally in the brain

(peptides like OT), or hormones that interact with others that

can be active within the brain. Neurohormones like OT and tes-

tosterone are known to impact the reward (e.g. dopagenic

neurons) and fear centres of the brain (e.g. amygdala), and

thus have the ability to reinforce or discourage behaviour. Neu-

roimaging studies indeed find strong effects of OT and

testosterone on behavioural and neural responses to social

stimuli [9,10], thus highlighting their neuromodulatory effects.
Cooperative behaviour, whether food sharing or resource

defence, is context and condition dependent; behaviours

towards other individuals may differ based on their related-

ness, social proximity or the actor’s physical condition.

This means that individuals need to adjust behaviours

based on their social setting and local ecology. For example,

group-living primates may tolerate relatives at the same feed-

ing patch, while simultaneously protecting their patch

against out-group members. Hormones and neurotransmit-

ters can change rapidly in response to different social and

environmental cues, enhancing tolerance of others in one

social situation, intensifying the potential for aggression in

another. Thus, hormones can exert the kind of flexible

and rapid control needed to adjust behaviour to varying

socio-ecological contexts.

(b) Studying hormonal mechanisms can inform
ultimate function

Understanding the physiology and biology of hormone–

behaviour interactions can provide insight into adaptations,

exaptations, trade-offs and constraints in the evolution of

these behaviours [5,6]. Selection may favour mutations for

higher levels of a hormone that impacts physiology and social

behaviour, resulting in higher baseline hormones. As baseline

hormone levels affect many target tissues, such evolutionary

changes may modulate many traits, some of which are not

http://rstb.royalsocietypublishing.org/


Table 1. Examples of social contexts associated with OT and testosterone for humans and primates. Note that review articles were cited when possible; blank
cells indicate that more research is needed, shaded cells are not applicable contexts.

hormone social context primates human males human females

OT maternal care all primates [13] [14]

paternal care marmosets [15] [16]

pair bond marmosets [17] [18,19]

friendships chimpanzees [20,21], macaques [22], marmosets [23] [9,13,24,25]

intergroup interactions [26,27]

testosterone paternal care marmosets [28], not titi monkeys [29] [16]

pair bond [16]

in-group [30] [31]

out-group chimpanzees [32] [33] no effect [34]

intrasexual competition chimpanzees [35], baboons [36], colobus monkeys [37],

not bonobos [38]

[39,40] [31]
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the original target of the selective pressure; these by-products

are commonly referred to as exaptations, and artificial selection

experiments may quantify the linkage between traits, resulting

in trade-offs and constraints on adaptation [6]. Changes in the

acute reactivity of specific target tissues, such as mutations in

receptor density or function, are more likely to be the original

target of selection, and therefore reflect adaptations. A classic

example often used to describe hormonal adaptations and

exaptations is the female spotted hyaena; female hyaenas

have relatively high levels of testosterone which probably

evolved as an adaptation to facilitate female–female compe-

tition and aggression [6]. As a systemic by-product of high

testosterone, female hyaenas are masculinized and develop

penile-like clitorises which are used in greetings and rank-dis-

play between adult females [11]. In this case, the adaptation is

higher baseline testosterone to facilitate competition, and the

exaptation is the co-option of the pseudo-penis in social behav-

iour [6]. Generally speaking, evolutionary changes in acute

reactivity and responsiveness of specific target tissue, e.g.

through changes in hormone receptor genes, probably reflect

selection for specific hormone–trait interactions and therefore

represent adaptations, whereas evolutionary changes in base-

line hormone levels are more likely to produce exaptations or

trade-offs [9] (figure 1).

Phylogenetic analysis can be a useful way to examine

when, and under what socio-ecological conditions a behaviour-

al change occurred, and whether these behavioural changes

were associated with any endocrine changes. However, in

order to appreciate the adaptive importance of any evolu-

tionary change in behaviour, the hormonal mechanisms must

be understood (cf. figure 1); thus, evolutionary history, current

utility and mechanism are critical for understanding the ulti-

mate function of complex behaviours such as cooperation and

collective action.
2. The role of oxytocin in the establishment and
maintenance of cooperative relationships

Cooperation requires investment in a social relationship that

generates direct or indirect fitness benefits, oftentimes by

paying a short-term cost to reap a long-term gain. This creates
several adaptive problems. First, ancestral mammalian asocial

preferences need to be overcome to increase tolerance of others

and shift behaviour in more prosocial directions. Second, suit-

able partners have to be identified, recruited and remembered,

with the level of investment in each relationship adjusted to the

expected fitness gains. Finally, benefits from cooperation

generated within the relationship have to be protected from

outside threats.

OT is fundamentally linked to each of these adaptive

problems, in cooperative relationships of all levels [4,12,13]

(table 1). OT achieves these functions by (i) decreasing social

anxiety, (ii) enhancing social cognition and social memory,

(iii) tracking the valence of social partners and regulating

prosocial motivation and (iv) enhancing the social salience of

outside threats. In the following sections, we discuss these

functions in the various relational contexts that OT is involved

in, ranging from the mother–infant bond to large-scale collec-

tive action. In each of these contexts, the function of OT is likely

to be parochial, regulating cooperative investment within

the relationship, but increasing xenophobia and protective

aggression against out-groups [13].
(a) Origins of oxytocin in mother – infant bonds
For placental mammals, internal gestation and lactation are

expensive for mothers both in terms of time and energy.

Above and beyond the ancestral mammalian patterns of

investment, extended human altriciality with multiple depen-

dents escalates these costs [7]. Hormones that help facilitate

bonding between mother and infant, particularly those that

lead to higher levels of maternal investment by stimulating

neural reward systems probably had a selective advantage

by increasing offspring survival, and thus enhancing female

reproductive success.

OT is strongly associated with smooth muscle contraction in

the context of parturition (and OT analogues with egg-laying in

non-mammals), as well as the milk let down response, which

begins with infant stimulation (either suckling or crying) pro-

moting a surge of OT that facilitates milk ejection [13,41]. The

neuroendocrine physiology of OT was co-opted for numerous

behaviours associated with maternal care including the regu-

lation of the amount of care given by mothers and demanded

http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20150014

4

 on October 26, 2015http://rstb.royalsocietypublishing.org/Downloaded from 
by infants [13,42] (table 1). While OT has similar impacts on lac-

tation and behaviour across many mammals, human and great

ape altriciality coupled with relatively high dependency loads

may have placed additional selective pressures on proximate

mechanisms that modulated maternal behaviour, in particular

tolerance to a long period of offspring contact and (multiple)

dependence. These selective pressures may have resulted in

higher baseline levels of OT, larger acute increases in OT when

exposed to offspring, greater densities or sensitivities of OT

receptors in the brain, or greater neural connections between

OT receptors and reward centres in the brain (figure 1), though

little is currently known about the phylogeny of OT in primates.

Similar changes probably resulted in the co-option of OT path-

ways for various other relational contexts as highlighted below.

It is important to reiterate that OT not only has

socio-positive effects, it is also expected to affect protective

aggression and to modulate trade-offs between current and

future reproduction (in addition to being an important modu-

lator of cognitive trade-offs [9]). Experimental evidence in mice

demonstrates that maternal OT mediates defence of offspring

against potential threats [43]. Studies in primates have yet to

examine offspring defence but do find evidence that OT

mediated in-group bias and defence at the level of larger

social groups in marmosets and humans [23,26,27] (see also

below). While OT is associated with increased maternal invest-

ment, there are conditions under which trade-offs between

current and future offspring should lead to downregulation

or even termination of investment. Studies have yet to test

whether low-quality infants induce a smaller OT response in

mothers or fathers, a hypothesis worth testing. Thus to sum-

marize this section, OT evolved in placental mammals as a

part of the milk let-down reflex, but then was later co-opted

to help modulate maternal behaviour and mediate trade-offs

between current and future reproduction.
(b) Oxytocin and male parental investment
Maternal care of offspring is universal among mammals, but less

than 5% of male mammals (and no great apes) engage in any

paternal care [44]. Many human fathers invest heavily in their

offspring [16,44], making the paternal–infant bond a derived

trait in humans. The human feeding niche requires extensive

bi-parental care, as well as additional multi-generational sup-

port, all of which would benefit from extensive tolerance by

human males of both their offspring and other family members

[45]. The anxiolytic and bonding aspects of increased OT may be

a critical proximate mechanism that keeps human males

engaged in familial provisioning [46].

Human males may not provide milk for their children, but

both baseline OT and acute increases in OT have been impli-

cated with increased levels of paternal care [14,16,47]. Fathers

who more intently play with their children show larger actuate

increases in OT [48,49]. Additionally, fathers given exogenous

OT engage in more physical contact, social reciprocity, eye

gazing and object manipulation with their infants than males

given a placebo [47]. Co-option of OT in paternal care is not lim-

ited to humans; in other primates with relatively high levels of

paternal investment such as marmosets and tamarins, exogen-

ous and endogenous changes in OT facilitate paternal care [15].

In sum, while males do not lactate, OT appears to have poten-

tially beneficial impacts on male parental investment in the

few primate species that do engage in paternal care.
(c) Oxytocin and pair-bonds
From a female perspective, OT modulation of pair-bonding

behaviour can be seen as an extension of the female’s reproduc-

tive context [13], but there is growing evidence that OT also

facilitates pair-bonding in male primates including humans.

OT levels were highly correlated among marmoset pairs, and

pairs with higher OT levels were more affiliative, though

females showed increases in OT when engaged in grooming,

while males only showed increases in OT when engaging in

sexual activity [50]. OT administration in marmosets led to

more huddling with reproductive partners, while OT antagon-

ists resulted in reduced proximity [17]. OT administration in

marmosets also decreased socio-sexual contact with strangers,

thus increasing fidelity within the pair bond [51]. In humans,

males display acute increases in OT when shown pictures

of their girlfriends, but not when shown pictures of other

women [52], suggesting the importance of context and connec-

tion, and not just sexual behaviour [18]. Indeed, men and

women who rate their relationships as stronger have higher

basal levels of OT [19]. However, as a mediator of investment

in pair-bonding, OT is subject to trade-offs in relationship

investment based on relationship quality. For example, in

aggressive individuals, OT administration increases jealousy

[53], as well as the propensity for intimate partner violence, a

potential tactic to limit a mate’s access to members of the oppo-

site sex [54]. In sum, OT is associated with the regulation and

maintenance of pair-bonds, above and beyond sexual behav-

iour, with studies indicating both positive and negative

impacts of OT on relationships depending on the social context.

(d) Oxytocin and friendships
Beyond parental care and pair-bonding, humans and some

primates engage in cooperative relationships among both

related and unrelated individuals, i.e. friendships [55–57].

Friendships involve the reciprocal exchange of various social

behaviours such as grooming, food sharing and coalitionary

support [2,58–60], and appear to be regulated by OT. For

example, a greater number and intensity in female friendships

in macaques is associated with higher levels of baseline OT,

though the same effect was not found among male macaques

[22]. In chimpanzees, acute increases in OT occur following

food sharing, leading to an intensification of reciprocal invest-

ment in the relationship [21]. Grooming also results in acute

increases in OT, with greater increases after grooming by kin

or friends [20]; short-term endogenous changes in OT thus

track the valence of social relationships, which is crucial

for adjusting cooperative behaviour to partner value. As

such, OT provides a mechanism for regulating investment in

reciprocal relationships.

The extensive reciprocal cooperation with changing

partners required by the human foraging niche and fission–

fusion sociality [8] was probably facilitated by a further co-

option of OT to increase prosocial disposition and motivate

the establishment and regulation of cooperative relationships

with new partners. Indeed, prosociality increases following

OT administration in a variety of economic games mimicking

resource-sharing contexts [24,61]. Additionally, experimental

evidence suggests that both endogenous release of OT [62]

and exogenously administered OT make individuals more will-

ing to trust their partners in economic games [25]. In this

context, the fact that the appropriate level of investment in the

relationship, exemplified by trust (i.e. the belief that a social

http://rstb.royalsocietypublishing.org/


Table 2. Examples of other potential hormonal mechanisms associated with human and non-human primate cooperative behaviour. Review papers cited where
possible, blank cells indicate that more research is needed.

hormone context primates human males human female

serotonin in-group macaques [72] [73 – 75]

prolactin paternal behaviour/pair-bonding marmosets [76], tamarins [77] [16]

oestrogen in-group no effect [34]

cortisol in-group marmosets [78], baboons [79],

bonobos [38], macaques [53]

[80 – 82]
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partner will cooperate), can be increased by endogenous OT or

artificial OT administration (and reduced by testosterone; see

below) highlights OT’s role in adjusting cooperation to expected

fitness gains. To conclude, OT has been co-opted beyond just

parental care and pair-bonding to influence many aspects of

prosocial behaviour, and species differences in reciprocal

cooperation should be reflected in evolutionary changes in

OT physiology (figure 1).
4

(e) Oxytocin and intergroup interactions
As mentioned before, the formation of an in-group at every

relational level (parent–infant, pair-bonds, friendships) also

creates an out-group which could threaten the benefits gener-

ated by cooperation and result in a parochial psychology

probably mediated by OT. In some species, interactions with

out-groups can be a context of large-scale collective action;

males in several non-human primate species from capuchins to

chimpanzees engage in coalitional aggression against out-

groups [63,64]. Little is currently known about hormonal

mechanisms underlying such coalitional aggression in other pri-

mates, though testosterone is involved in border patrols among

chimpanzees (see below) [32]. In humans, OT administration

increases in-group conformity [65], increases ethnocentrism

and decreases trust of out-group members [66], as well as

increasing willingness to lie to out-group members [67]. Thus,

while OT mediates aspects of bonding with in-group members,

it also fosters an out-group psychology.

Internal and external warfare among small-scale hunter–

gatherer groups arguably resembles coalitionary aggression in

chimpanzees [1] and to the extent that this indicates an ancestral

adaptive problem, the OT mediated in-group/out-group psy-

chology described above [68] might reflect shared adaptations

for coalitional aggression among humans and chimpanzees.

However, in the past 8000 years shifts to more defensible

resources such as livestock or agricultural land have led to

increases in the frequency, scale and intensity of warfare [8].

In this context, culturally evolving mechanisms for co-opting

the parochial effects of OT could have been crucial for success

in warfare [69–71]; for instance, the creation of stable coopera-

tive units with fictive kinship categories (‘brothers in arms’)

could perhaps amplify in-group loyalty and xenophobia,

while the rigid hierarchies and systems of reward and punish-

ment typical of successful armies might be partly based on

hormonal mechanisms for dominance and subordination

shared with other hierarchical primates. In summary, there is

good evidence that OT modulates parochial psychology in

humans, though little research has examined its effects in real

intergroup interactions in any species. It is an open question

whether the large-scale collective action seen in human warfare
is mediated by derived mechanisms or ones shared with

other primates.
3. Testosterone, competition and paternal
investment

While we have thus far focused on OT, there are a number of

other endocrine mechanisms associated with social behaviour

(tables 1 and 2); when it comes to conflict and competition,

either in human or animal models, most hormonal research

has focused on testosterone. Testosterone is related to many

male reproductive trade-offs; higher levels of testosterone

have anabolic effects on muscle tissue which, while beneficial

for male–male physical confrontations, can force energetic

trade-offs between costly muscle mass and immune function

[83]. The evolution of testosterone in vertebrates probably

began with male–male competition over access to mates.

Muscle tissue is calorically costly to maintain, as muscle

mass uses approximately 20% of daily basal metabolic rate

in adult human males [84], and testosterone is also lipolytic,

burning off fat reserves that could be vital during lean times

[85]. Males in better condition can afford higher levels of

testosterone and the associated physiological costs; thus

there is a wide range of testosterone levels within and between

individuals [86,87].

Males in poor condition cannot maintain high levels of

testosterone; illness and injury lead to rapid decreases in tes-

tosterone [88–90], as does short and longer term fasting

[91,92], and extensive energetic expenditure [93]. While

some human and chimpanzee populations show no seasonal

variation in testosterone [94,95], large studies of subsistence

human and wild baboon populations report decreases in tes-

tosterone during leaner times [96,97]. Despite population

variation in baseline testosterone, even populations with

low baseline testosterone express acute increases in testoster-

one of the same relative magnitude as those reported in

energetically replete populations [98]. Because maintaining

consistently high levels of testosterone can be energetically

expensive (among other costs to parenting and potential

immunosuppression), many seasonally breeding species

avoid these costs by only producing high levels of testosterone

during the mating season [87].

(a) Testosterone, parenting and pair-bonding
While OT tends to increase during parenting, many species,

including humans, show decreases in testosterone [16,99].

Higher levels of testosterone are correlated with mating

effort in seasonally breeding [100,101] and non-seasonally

http://rstb.royalsocietypublishing.org/
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breeding primates [16,35]. Engaging in mate competition,

mate guarding and courtship takes a significant amount of

time and energy. For primates that engage in paternal behav-

iour, the energetic costs of investing in new reproductive

opportunities trades off against investment in paternal care

of current offspring. Thus, it is not surprising that males in

species with paternal care tend to have lower levels of testos-

terone while engaging in paternal behaviour [102]. For

monogamous species, reproductive effort not only trades

off against parenting, but also with investment in a single

mate versus other mates [16,29,103]. Thus, high testosterone

levels are associated with short-term mating strategies, and

low testosterone levels with long-term mating strategies.
 rans.R.Soc.B
370:20150014
(b) Testosterone and dyadic competition
Acute increases in testosterone during male–male compe-

tition permit short-term benefits such as increased sugar

uptake by muscle cells during physical confrontations while

avoiding the energetic costs of a continually high testosterone

phenotype [104,105]. The dynamics of acute and longer term

(e.g. seasonal) testosterone change have been well studied

using a life-history theory framework with a theoretical

model called the challenge hypothesis (CH) [99]. The CH

has been applied to dyadic encounters in many vertebrates

from fish [106] to birds [99], and mammals including

primates [35,107,108]. The acute male–male competition por-

tion of the CH, which has since been expanded upon by

Wingfield and co-workers [109], has also been applied to

human male sports competitions among unrelated men,

resulting in increased testosterone during and following com-

petition [39]. It should be noted that while in humans this

research is usually conducted among young, college-age

males who are in the peak age range for testosterone, acute

increases in testosterone occur across a wide range of ages

[98], and even among women [31].

While engaging in physical competition often results in

acute increases in testosterone in both competitors, the

winners of male–male competition appear to have larger

increases in testosterone across many taxa [107], includ-

ing many, though not all, studies in humans [39]; this

phenomenon is often called the ‘Winner Effect’ or ‘Winner-

Challenge Effect’. In humans and animal models, repeated

acute increases in testosterone during physical activity have

the potential to benefit muscle physiology [104,105,110]

(though see [111,112], and the rebuttal [113]). In animal

models, repeated winning during conflict can result in more

aggressive strategies and the increased probability of winning

future fights [107,114]. The mechanism responsible for acute

increases in testosterone during competition or even physical

activity has yet to be elucidated, and indeed some types of

non-competitive physical activity result in greater increases

in testosterone than direct male–male competition [115]. It

is therefore difficult to test whether acute increases in testos-

terone during physical activity are an adaptation, or

exaptation. That said, it is important to note that acute

increases in testosterone also occur during competition in

the absence of physical activity (e.g. chess, dominoes and

video games) [30,116,117]. Acute increases in testosterone

during even non-physical interactions help prepare the com-

petitor, by activating receptors in the amygdala that increase

the salience of violent threat [10], and also via acute benefits

to muscle physiology in the event that the confrontation
escalates to violence [105]. Additionally, there appears to be

an anticipatory rise in testosterone prior to sports compe-

tition, even before any physical activity has taken place,

perhaps preparing the body both physically and mentally

[118]. Thus it seems likely that acute increases in testosterone

during competitive non-physical activity, or in preparation

for physical competition, are indeed adaptations to prepare

the competitor both mentally and physically, while avoiding

the costs (e.g. energetic, potentially immunosuppressive,

parenting) of consistently elevated testosterone.
(c) Testosterone and intergroup competition
While many mammalian competitions are dyadic with a

single winner and a single loser, human and other primate

competitions often involve large groups of related or unre-

lated individuals. Consistent with the parochial psychology

described above (e.g. [65,66]), men and women engaging in

competition against another team show larger increases in

testosterone than when they are scrimmaging with their

own teammates [30,31]. Interactions between testosterone

and OT may reinforce each other to produce these parochial

effects (see below). Additional evidence with more salient in-

groups come from Dominica, where men playing dominoes

against competitors from neighbouring villages tended to

have larger increases in testosterone than individuals playing

against competitors from their home community [117].

A recent study found that acute increases in testosterone can

increase cooperation within an in-group via increased paro-

chial altruism when facing a potential out-group [119].

Interestingly, research conducted among Tsimané, where

community membership is fluid and community-based com-

petitions often pit men against their kin, show no evidence of

a team-based winner effect [98].

Competition between sports teams often allow individuals

to show their prowess regardless of their team’s success;

indeed, studies find that males who outperform their team-

mates show larger increases in testosterone, regardless of

whether their team won or lost [98]. In chimpanzees, certain

‘impact’ males increase the likelihood of a border patrol

[120,121], and some of these impact patrollers also went on to

become alpha male and achieve high reproductive success. It

is not known whether these impact patrollers show acute

spikes in testosterone beyond that of other chimpanzees on

the same patrol, but such a study would be an interesting com-

parison given that high impact human soccer players have

larger acute increases in testosterone than others on the same

team [98]. Thus, individual differences in performance

or motivation are probably related to differences in endocrine

physiology, with substantial effects for collective action.
4. Synthesis and future directions
While the above studies describe some of the current state of

the literature in regards to two potential hormonal modu-

lators of cooperation at various relational levels, there is still

a paucity of research on hormonal mechanisms that help

facilitate large-scale collective action. Three potential areas

for future research are discussed below; (a) interactions

between hormonal systems, (b) genetics and sensitivity of

hormone receptors and (c) phylogenetic analyses.
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(a) Interactions between hormonal systems
Most studies of hormone–behaviour interactions focus on a

single behaviour and a single hormone, but not interactions

between endocrine systems. Interactions are important

because considerations of adaptive value or exaptation for a

particular hormone requires knowledge of the average effects

of that hormone across all conditions, even when those

conditions may vary across levels of other hormones. A few

papers have addressed the possibility of interactions between

a limited number of hormones. For example, the ‘Dual

Hormone Hypothesis’ examines interactions between cortisol

and testosterone with respect to dominance [122]; in particu-

lar, when male social status is under threat, high testosterone

men become aggressive, though only when cortisol is low

[123]. Another line of evidence examines the ‘Steroid/Peptide

Theory of Social Bonds’ focusing on the inter-related roles of

testosterone, OT, vasopressin and social bonding [103]. Other

studies have examined the impact of cortisol on testosterone

following fatherhood [124]. These are excellent first steps, as

individual hormones do not exist in isolation. There are

many examples of hormonal systems that overlap in their

response to a stimulus; during mammalian stress response,

rapid increases in catecholamines (epinephrine and norepi-

nephrine) have acute impacts on heart rate and blood

pressure, and release glucose stored in the liver to increase

energy necessary to fight or flee from the stressor. Catechol-

amines also release enzymes that speed up the ability of the

body to release cortisol. Thus, there are networks of synergis-

tic and antagonistic hormones that reinforce and feedback

into other hormonal systems. With the advent of new imag-

ing techniques like multiplex technology, it is now possible

to measure multiple hormones simultaneously, and to

explore interactions not only between baseline hormone

levels, but also among levels during acute changes in these

hormones, in relation to different treatment conditions.

How do OT and testosterone interact to produce

cooperation at the various relational levels discussed here?

While testosterone and OT are usually considered diametri-

cally opposed forces, with testosterone promoting aggression

and OT promoting bonding (e.g. [13,103]), there is evidence

in mouse models that higher levels of testosterone can promote

OT binding [125] and receptor transcription [126]. OT can also

augment Leydig cell testosterone production [127,128]. Studies

in humans show that both testosterone and OT increase simul-

taneously in a range of activities from sexual activity [18], to

hunting [46], to in-group/out-group competition [26,33], and

that exogenous OT administration increased salivary testoster-

one levels and enjoyment from parenting in fathers [47]

(though note that not all OT administration studies find con-

current increases in testosterone [129]). Taken at face value,

this evidence may suggest the potential for OT and testosterone

to work in concert to promote cooperative or coalitional beha-

viours. For example, high levels of OT could increase tolerance

within an in-group and simultaneously facilitate negative

interactions with out-group members [26,67,68], while a con-

current rise in testosterone could prepare both body [105]

and mind [10] for potential violent interactions. Thus, testoster-

one and OT could be working in a coordinated fashion to

facilitate investment in cooperative relationships (mostly low

testosterone, high OT), but also protective aggression against

out-group threats at any relational level (high testosterone,

high OT). Beyond parenting and mating contexts [103], studies
examining interactions between testosterone and OT in terms

of baseline levels and acute changes in relation to cooperative

behaviour have yet to be conducted [47].

(b) Beyond hormone concentrations: genetics and
sensitivity of hormone receptors

Most studies examining hormone–behaviour interactions have

focused on measuring baseline and/or acute changes in circu-

lating hormones, or the behavioural changes induced by an

exogenous administration of a hormone; yet circulating hor-

mone levels comprise only one component of a broader

biological communication network that facilitates different be-

havioural responses (figure 1). A classic example of the role of

hormone receptors, above and beyond circulating hormone

levels, comes from monogamous prairie voles and polygynous

montane voles, both of which have the same circulating levels

of OT but differ in receptor distribution in the brain [130]. As

the effects of these changes are highly localized (as opposed

to the systemic effects of changes in baseline levels), they prob-

ably represent adaptations resulting from selection on specific

behaviours, in this case pair-bonding and parenting [7].

For a hormone to have an impact on behaviour then, it must

activate receptors in critical brain regions. Most hormone

receptors are laid down during sensitive organizational

periods, such as perinatally and during puberty [131–133].

Most experimental work on receptors is with murine models,

where exposure to androgens is critical for the development

of androgen receptors and the organization of brain physi-

ology. Male mice gonadectomized prior to puberty never

develop the level of androgen receptors required for activa-

tion of male behaviours, even when exposed to high levels of

testosterone during adulthood [131]. This may explain some

sex differences in male and female response to exogenous tes-

tosterone (table 1); studies in humans find that males given

testosterone supplementation show changes in behaviour on

economic games [33], while women show no behavioural

change [34]. Interestingly, female hyaenas are one of relatively

few species where testosterone regulates female aggression,

and females have relatively high levels of circulating androgens

in utero and during the peri-pubertal period; female hyaenas

thus develop androgen receptors and behaviour typically

associated with male mammals [6,11].

It is difficult to measure receptor densities in living ani-

mals. Most studies that directly measure receptor densities

sacrifice the animal, and then stain brain tissue. Another,

less invasive method to examine individual or species differ-

ences in receptors is through variation in the genetics of

hormone receptors (table 3). With regards to androgens, the

number of CAG codon repeats on the androgen receptor

modulates the impact of circulating androgens; fewer CAG

repeats result in greater androgen receptor protein expression

and transcriptional activity, which result in greater impact

per unit of circulating androgen [150]. In non-human pri-

mates, macaques and marmosets have no variation in CAG

repeats (monomorphic), while baboons and chimpanzees

show polymorphic variation [151]. Several studies have

reported that human males with fewer CAG repeats have

higher levels of upper body strength, self-reported competi-

tiveness and greater testosterone response to potential mate

exposure [150,152], though not all studies find associations

between strength and CAG repeat length [153,154].
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Table 3. Examples of receptor genetics associated with cooperative behaviours for humans and primates. Review articles cited when possible, blank cells
indicate more research is needed.

receptor genetics context primates human males human females

androgen receptor short CAG repeats! less prosocial in Chinese, but

not Israeli men

[134]

no effect [134]

oestrogen receptor

(ER-b)

shorter allele (suggesting more oestrogenic

activity) linked to lower minimal

acceptable offer

[134]

serotonin

transporter (5-HTT)

longer allele more prosocial, shorter allele

more anxious

macaques [135 – 137] [138]

dopamine receptor

(DRD4)

DRD4 allele increase in fairness no effect in macaques [135] [139]

vasopressin receptor vasopressin receptor AVPR1A-RS3 carriers

less fair in dictator games

[140,141]

double deletion of DupB region (which

includes RS3) decreases social cognition,

competence

chimpanzees [142]

no deletion in bonobos [143]

vasopressin receptor AVPR1A-RS3 more

likely to divorce

[144]

OT receptor OXTR SNPs (rs53576 and rs2254298)

increase prosociality

no variation in chimpanzees and

bonobos [143]

mixed results [145,146], but some

meta-analyses show no significant

effect [147]

OXTR and pair-bonding receptor differences in primates

do not map onto mating

system [148]

prolactin receptor pair-bonding receptor differences do not map onto paternal care [149]
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Though the genetics of androgen receptors may be a prom-

ising avenue, the evidence for impacts of several candidate

single nucleotide polymorphisms (SNPs) associated with the

OT receptor gene OXTR appears less conclusive, as indicated

by a recent meta-analysis finding no significant overall effects

of OXTR variation on social behaviour [147] (though another

meta-analysis vindicated an association with autism [145]).

Furthermore, bonobos and chimpanzees do not exhibit these

candidate SNPs despite differences in social behaviour [143],

and variation in OXTR as well as prolactin and vasopressin

receptor genes across primates more broadly do not easily

map onto social and mating systems [148,149,155]. Finally, sug-

gestive results have been found for various other receptor

genes, as summarized in table 3. For example, chimpanzees

with a deleted DupB region of the vasopressin receptor have

impaired social cognition and fewer allies [142]; in human

males, deletion of a portion of the same region (RS3) is associ-

ated with higher divorce rates [144]. In summary, there is a

limited, but growing body of evidence that variation in the gen-

etics of hormone receptors may impact social behaviour above

and beyond circulating hormone levels (e.g. figure 1), thus

providing more direct evidence for adaptation [9].

In sum, hormonal reinforcement of behaviour need not just

result from increased hormone levels, but also increased recep-

tor sensitivity or density, or even increased neural transport of

hormonal signals to critical brain regions. When considering
the evolution of mechanisms that could reinforce behaviour,

it is therefore essential to focus not just on hormones, but

also their binding proteins (which modulate the bioavailability

of circulating hormones), receptor sensitivity and specificity,

and the location of those receptors in critical brain regions

(figure 1). For example, most circulating testosterone in

humans is bound to carrier proteins (sex hormone-binding

globulin (SHBG) and albumin), with only about 2% of circulat-

ing testosterone unbound or ‘free’. Testosterone bound to

SHBG is unavailable for use in target tissues, so species level

variation in SHBG could influence the bioavailability of testos-

terone even for two species with the same total levels of

testosterone. Advances in endocrinology, receptor genetics

and neuroimaging will make it possible to examine how

changes in hormones impact brain physiology in ways that

impact changes in behaviour [10,156].
(c) Phylogenetic approaches to hormonal mechanisms
Examining the evolutionary history of the mechanisms that

mediate hormonal physiology is a vital step for disentangling

adaptations from exaptations, trade-offs or constraints [6]. Phy-

logenetic analyses of more than 100 avian species suggest that

environmental constraints shape reproductive behaviour and

mediate both baseline and peak levels of androgens [157].

However, phylogenetic analyses examining differences in
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hormone–behaviour interactions, particularly those related to

cooperation, competition and collective action in primates,

have yet to be conducted. One of the few studies looking at

closely related primate species with different social ecologies

found substantial differences in chimpanzee and bonobo

hormonal responses to competition [38]. An integrated phylo-

genetic approach, examining both baseline and acute changes

in neurohormones and receptor densities, binding proteins

and other potential hormonal mechanisms across primate

species, is needed to advance our understanding of evolved

human behavioural endocrinology.
Phil.Trans.R.Soc.B
370:20150014
5. Conclusion
While most of the hormone–behaviour interactions discussed

here were species typical (e.g. the role of OT in marmoset

paternal care), individuals within many species vary in their

degree and willingness to cooperate, reflecting different adap-

tive strategies. The rich literature on animal and human

personality, or ‘behavioural syndromes’, is similarly focused

on the adaptive logic of relatively stable, individual differences

[158]. Hormones may play a proximate role in modulating

certain aspects of personality variation. For example, testoster-

one has been linked to behaviours conceptually related to

dispositional dominance [159]. Basal levels of hormones like

testosterone may serve as biomarkers of individual difference,

given its relative temporal stability. A recent study among

high fertility Senegalese men showed that higher testosterone

was associated with greater extraversion [160], lower parenting

effort and greater tendency to be married polygynously [161],

whereas in a US sample high testosterone men also had larger

testes, engaged in less parenting and showed weaker neuronal

activation in response to pictures of their babies [102]. Thus, one

potential underlying proximate cause for individual differences

is that both baseline and acute changes in neurohormones like
testosterone or OT vary within and between individuals. As

mentioned above, it is likely that such hormonally mediated

personality differences play a substantial role in shaping

cooperation and collective action [121].

Despite sharing the same conserved components of the

endocrine architecture with other primates and mammals,

humans cooperate in more contexts and at larger scales

[1–3]. A critical question for future research is whether

high levels of cooperation in humans differ mechanistically

from other species, and in particular whether they are

driven by changes in circulating hormone levels that

impact various behaviours, e.g. through selection for

reduced dominance (testosterone) and increased tolerance

(OT), or whether selection for specific behaviours has chan-

ged endocrine physiology in more targeted ways (e.g.

differences in receptor density or selectivity, binding pro-

teins, etc.; cf. figure 1) [7]. Answering these questions has

potential implications for various theories of human and

primate cooperation such as the cooperative breeding

hypothesis [3] (which posits a general increase in social tol-

erance and cognition, e.g. through higher OT levels) or the

self-domestication hypothesis [162] (general decrease in

aggression, e.g. through lower testosterone). It is likely

that with a better understanding of interactions between

hormones, a stronger focus on hormone receptors and

better tools to examine neuronal function, we will have a

better understanding of the hormonal modulation that facili-

tated the evolution of large-scale human and primate

coalitional behaviour.
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