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 Table S1, related to Table 1: List of fixed effects included in each candidate model for meat given from A to B; in each row only new fixed effects not included 

in previous models are listed. For other types of cooperation (produce A to B, labor A to B, childcare A to B, sick care A to B), the in-kind reciprocity and in-

kind market forces change to the respective other currency (e.g. Produce B to A) and their supply and demand (e.g. Horticultural Production A, Field Size A, 

Horticultural Production B, Field Size B) as mentioned in the text (see also Table S2), otherwise the candidate models are the same.  

Model New fixed effects compared to previous model 

Null - 

Kinship and controls Distance A-B, Need A, Age A, Age B, N sampling days A, Mean R * Need B
a
 

In-kind reciprocity Meat B to A 

Full exchange Produce B to A, Labor B to A, Childcare B to A, Sick care B to A 

In-kind market forces Meat Production A * Meat B to A, CV Meat Production A * Meat B to A, Meat Production B, CV Meat Production B 

Full exchange market 

forces 

Hort. Production A * Produce B to A, Field Size A* Produce B to A, Family Size A * Labor B to A, Field Size A * Labor B 

to A, Family Size A * Childcare B to A, Field Size A * Childcare B to A, Family Size A * Sick care B to A 
a 
Interaction terms imply the presence of both main effects  



Table S2, related to Table 1, Figures 1 and 2: Table of coefficients for the best-fit models (and the averaged model in the case of childcare). Predictors showing 

statistical trend or significance are bolded (where pMCMC is the proportion of samples that cross 0). Standardized coefficients (β) are given in italics 

 

 Meat A to B [cals] 

b (lower, upper 95% CI) 
Produce A to B [cals] 

b (lwr, uppr 95% CI) 
Labor A to B [days] 

b (lwr, uppr 95% CI) 
Childcare A to B [y/n] 

b (lwr, uppr 95% CI) 
Sick care A to B [y/n] 

b (lwr, uppr 95% CI) 

𝑅𝑚
2

 / 𝑅𝑐
2 0.24 / 0.99 0.08 / 0.94 0.09 / 0.96 0.33/0.99

b
 0.42/0.84

b
 

Zero-inflation intercept 0.84 (-2.28, 4.00)***     

Intercept 3.21 (2.88, 3.54) -8.74 (-15.93, -1.14)* -6.64 (-11.09, -2.38)** -43.87 (-77.86, -11.25)** -23.35 (-36.17, -12.3)*** 

Meat B to A [cals] 0.03 (0.02, 0.04)*** 

β = 0.11 

0.02 (-0.01, 0.04) 

β = 0.06 

-0.02 (-0.05, 0.01) 

β = -0.07 

-0.02 (-0.05, 0.02) 

β = -0.03 

0.01 (-0.00, 0.015) 

β = 0.05 

Produce B to A [cals] 0.01 (0.01, 0.02)*** 

β = 0.23 

-0.01 (-0.03, 0.01) 

β = -0.14 
-0.02 (-0.04, -0.00)* 

β = -0.29 

-0.01 (-0.01, 0.00) 

β = -0.04 

-0.00 (-0.00, 0.00) 

β = -0.01 

Labor B to A [days] 0.07 (-0.10, 0.25) 

β = 0.01 

-0.02 (-0.55, 0.46) 

β = 0.00 
0.28 (-0.09, 0.60)

t
 

β = 0.02 

1.20 (-0.08, 2.46)
t
 

β = 0.05 

0.22 (-0.11, 0.55) 

β = 0.04 

Childcare B to A 

[yes/no] 

-0.03 (-1.32, 1.49) 

β = 0.00 

1.60 (-1.39, 4.53) 

β = 0.01 
2.11 (-0.22, 4.49)

t
 

β = 0.02 

38.97 (17.19, 62.80)** 

β = 0.19 

2.99 (0.03, 6.07)* 

β = 0.06 

Sick Care B to A 

[yes/no] 

-0.00 (-1.41, 1.46) 

β = 0.00 

0.96 (-2.36, 4.12) 

β = 0.01 

0.83 (-1.57, 3.24) 

β = 0.01 
-10.79 (-21.32, -1.25)* 

β = -0.05 

0.05 (-3.80, 3.84) 

β = 0.00 

Relatedness A-B [mean 

R] 
8.84 (3.97, 13.81)*** 

β = 0.03 

17.26 (7.86, 27.09)*** 

β = 0.05 

16.69 (9.07, 24.55)*** 

β = 0.05 

107.57 (69.75, 147.46)*** 

β = 0.18 

44.93 (26.76, 64.17)*** 

β = 0.33 

Log Distance A-B [km] -1.43 (-1.83, -1.06)*** 

β = -0.07 

-2.51 (-3.42, -1.64)*** 

β = -0.13 

-0.44 (-0.93, 0.04)
t
 

β = -0.02 

-8.29 (-16.41, -1.48)*** 

β = -0.24 

-1.65 (-3.36, -0.27)* 

β = -0.21 

Need A [cals] 0.00 (-0.00, 0.00) 

β = 0.02 

0.00 (-0.00, 0.00) 

β = 0.00 

-0.00 (-0.00, 0.00) 

β = -0.01 

-0.00 (-0.01, 0.00) 

β = -0.18 

0.00 (-0.00, 0.00) 

β = 0.01 

Need B [cals] 0.00 (-0.00, 0.00) 

β = 0.01 

-0.00 (-0.00, 0.00) 

β = 0.00 

0.00 (-0.00, 0.00) 

β = 0.01 

0.00 (-0.00, 0.00) 

β = 0.08 

-0.00 (-0.00, 0.00) 

β = -0.09 

Midparent Age A 

[years] 

-0.02 (-0.05, 0.02) 

β = -0.03 

-0.05 (-0.14, 0.03) 

β = -0.03 

-0.02 (-0.06, 0.023) 

β = -0.01 

0.15 (-0.27, 0.58) 

β = 0.06 

-0.03 (-0.13, 0.07) 

β = -0.05 

Midparent Age B 

[years] 

0.00 (-0.03, 0.03) 

β = 0.00 

0.00 (-0.06, 0.07) 

β = 0.00 

-0.05 (-0.13, 0.02) 

β = -0.03 

-0.22 (-0.68, 0.20) 

β = -0.08 

0.01 (-0.07, 0.09) 

β = 0.01 

Sampling Days A 0.00 (-0.01, 0.02) 

β = 0.01 

0.01 (-0.04, 0.05) 

β = 0.02 

0.00 (-0.02, 0.02) 

β = 0.00 

-0.17 (-0.45, 0.10) 

β = -0.12 
0.07 (0.01, 0.14)* 

β = 0.22 

Avge Meat Production 

A [cals/d] 
0.53 (0.18, 0.92)** 

β = 0.02 

0.26 (-0.81, 1.35) 

β = 0.01 

0.37 (-0.09, 0.84) 

β = 0.02 

-1.55 (-7.61, 4.53) 

β = -0.04 

-0.53 (-1.92, 0.80) 

β = -0.06 

Variance Meat 

Production A [CV] 

-0.41 (-0.90, 0.15) 

β = -0.02 

-0.81 (-2.20, 0.54) 

β = -0.04 

0.25 (-0.32, 0.77) 

β = 0.01 

3.97 (-3.59, 11.82) 

β = 0.10 

0.10 (-1.55, 1.78) 

β = 0.01 

Avge Horticultural 

Production A [cals/d] 

0.12 (-0.28, 0.56) 

β = 0.00 

0.62 (-0.65, 1.75) 

β = 0.03 

0.13 (-0.41, 0.70) 

β = 0.01 

-0.48 (-8.10, 6.78) 

β = -0.01 

-0.82 (-2.68, 1.00) 

β = -0.09 

Field Size A [tareas] 0.19 (-0.27, 0.63) 0.66 (-0.79, 1.91) -0.368 (-0.97, 0.21) 5.99 (-2.20, 14.51) 1.42 (-0.36, 3.31) 



β = 0.01 β = 0.03 β = -0.02 β = 0.15 β = 0.16 

Family Members A 0.54 (-0.10, 1.16)
t
 

β = 0.02 

0.59 (-1.04, 2.02) 

β = 0.03 

0.26 (-0.42, 1.01) 

β = 0.01 
-8.97 (-20.63, 1.51)

t
 

β = -0.22 

-0.19 (-2.36, 1.91) 

β = -0.02 

Family Members B   -0.46 (-1.60, 0.69)
t
 

β = -0.02 

-2.22 (-9.95, 5.63) 

β = -0.05 
-1.48 (-3.03, 0.02)* 

β = -0.16 

Avge Meat Production 

B [cals/d] 

0.11 (-0.26, 0.45) 

β = 0.00 

    

Variance Meat 

Production B [CV] 

0.31 (-0.14, 0.76) 

β = 0.01 

    

Avge Horticult. 

Production B [cals/d] 

 0.03 (-0.82, 0.82) 

β = 0.00 

   

Field Size B [tareas]  -0.31 (-1.18, 0.53) 

β = -0.01 

0.85 (-0.06, 1.80) 

β = 0.04 

-2.18 (-8.57, 3.89) 

β = -0.06 

 

Relatedness A-B * 

Need B 

-0.00 (-0.00, 0.00) 

β = 0.00 

-0.00 (-0.00, 0.00) 

β = -0.01 

-0.00 (-0.00, 0.00) 

β = 0.00 
-0.02 (-0.04, -0.01)** 

β = -0.11 

0.00 (-0.00, 0.01) 

β = 0.05 

Meat B to A * Avge 

Meat Production A 

0.01 (-0.00, 0.01) 

β = 0.04 
-0.02 (-0.03, 0.00)* 

β = -0.10 

0.00 (-0.01, 0.02) 

β = 0.01 

-0.01 (-0.03, 0.01) 

β = -0.04 

0.00 (-0.00, 0.01) 

β = 0.06 

Meat B to A * Variance 

Meat Production A 

0.00 (-0.01, 0.02) 

β = 0.00 

-0.00 (-0.03, 0.03) 

β = -0.01 

0.00 (-0.03, 0.03) 

β = 0.00 
-0.08 (-0.13, -0.02)*** 

β = -0.13 

-0.01 (-0.02, 0.00) 

β = -0.07 

Produce B to A * Avge 

Horticult. Production A 

-0.00 (-0.00, 0.01) 

β = 0.01 

0.01 (-0.01, 0.03) 

β = 0.15 

0.00 (-0.02, 0.02) 

β = 0.03 
0.01 (0.00, 0.02)* 

β = 0.08 

0.00 (-0.00, 0.00) 

β = 0.06 

Produce B to A * Field 

Size A 

0.00 (-0.00, 0.01) 

β = 0.00 

-0.00 (-0.02, 0.01) 

β = -0.05 

0.00 (-0.02, 0.02) 

β = 0.00 
0.01 (0.00, 0.02)* 

β = 0.08 

-0.00 (-0.00, 0.00) 

β = -0.04 

Labor B to A * Family 

Members A 

0.16 (-0.05, 0.37) 

β = 0.01 
-0.53 (-1.11, 0.06)

t
 

β = -0.05 

0.13 (-0.32, 0.56) 

β = 0.01 

-0.03 (-2.00, 1.77) 

β = 0.00 

-0.02 (-0.46, 0.38) 

β = 0.00 

Labor B to A * Field 

Size A 

-0.08 (-0.36, 0.21) 

β = 0.00 

0.33 (-0.35, 1.02) 

β = 0.02 

-0.20 (-0.87, 0.45) 

β = -0.01 

-0.86 (-2.87, 1.21) 

β = -0.03 

-0.08 (-0.67, 0.53) 

β = -0.01 

Childcare B to A * 

Family Members A 

-1.43 (-3.42, 0.67) 

β = 0.00 

-0.54 (-3.96, 3.20) 

β = 0.00 

1.53 (-1.26, 4.39) 

β = 0.01 

11.70 (-15.19, 39.11) 

β = 0.05 

1.48 (-2.55, 5.46) 

β = 0.03 

Childcare B to A * 

Field Size A 

-0.69 (-1.71, 0.40) 

β = 0.00 
3.01 (0.54, 5.53)* 

β = 0.02 

-0.17 (-2.29, 1.85) 

β = 0.00 

13.46 (-7.63, 36.58) 

β = 0.06 

1.49 (-1.26, 4.19) 

β = 0.03 

Sick Care B to A * 

Family Members A 

0.10 (-1.44, 1.72) 

β = 0.00 

-2.49 (-5.85, 0.79) 

β = -0.02 
-2.73 (-5.24, -0.34)* 

β = -0.02 

-23.63 (-36.85, -11.25)*** 

β = -0.12 

-2.84 (-7.22, 1.38) 

β = -0.06 
t
 P<0.1, * P<0.05, ** P<0.01, *** P<0.001 

a
These variables were all z-score transformed such that 0 is the population average; the main effects of receiving are thus estimated at the population average for 

supply and demand, and the main effects of supply and demand are estimated at 0 receiving. 
b
Note that the residual variance for binary models was fixed [S1, S2] 

  



Table S3, related to Figure 3: Model summary predicting total cooperation given 

 Total Help A to B 

b (upper, lower 95% CI) 

𝑅𝑚
2

 / 𝑅𝑐
2 0.20 / 0.33 

Intercept -1.43 (-1.96, -0.85)*** 

 

Total Help B to A 0.57 (0.49, 0.66)*** 

β = 0.14 

Relatedness A-B  3.66 (2.56, 4.84)*** 

β = 0.07 

Log distance A-B  -0.12 (-0.22, -0.01)* 

β = -0.04 

Need A  0.00 (-0.00, 0.00) 

β = -0.02 

Need B 0.00 (-0.00, 0.00) 

β = 0.02 

Age A  -0.01 (-0.02, -0.001)* 

β =-0.04 

Age B -0.00 (-0.01, 0.01) 

β = -0.01 

Relatedness : Need B 0.00 (-0.00, 0.00) 

β = 0.00 

 

  



 

Table S4, related to Experimental Procedures: Descriptive statistics of variables used in analyses 

 

Variable name Type [units] Mean SD Range 

Meat sharing Numeric [cals/d] 12.2 77.9 0-1534 

Produce sharing Numeric [cals/d] 48.2 313.9 0-6527 

Labor sharing Numeric [d/y] 0.3 1.7 0-38 

Childcare Binary [yes/no] 0.04 0.2 0-1 

Sick care Binary [yes/no] 0.04 0.2 0-1 

Mean relatedness Numeric [R] 0.04 0.07 0-0.34 

Distance Numeric [log km] 0.01 1.2 -6.9 – 1.8 

Meat production
a
 Numeric [cals/d] 6.0 1.2 -0.9-8.5 

Variance in meat 

production
a
 

Numeric [CV] 3.0 1.0 1.3-7.5 

Horticultural 

production
a
 

Numeric [cals/d] 8.1 1.0 5.3-10.0 

Total size of fields
a
 Numeric [tareas

b
] 18.7 13.3 0-71 

Midparent age Numeric [years] 42.8 15.6 16-86 

Family size
a
 Numeric 5.9 3.0 1-15 

Net need Numeric [cals] -102.4 3017.7 -9692 - 8687 

Sampling days Numeric [d] 102.5 29.6 8-166 

a
 These variables were entered into the analysis as z-scores 

b 
1 tarea = 628.9 m

2 

 

 



Supplemental Experimental Procedures 

Data collection and preparation 

Food sharing, production, and consumption: From January 2005 to December 2009, adults (n=1245) from 11 

communities were interviewed once or twice per week about all production activity during the previous two days. 

Each family was interviewed an average of 45.5 times (SD = 20.4). Quantities produced and shared were estimated 

through the use of locally understood standard measures and project data on mean weights for common resources, 

and converted into calories using standard nutritional tables. Here we included the total meat/produce calories 

produced and transferred as well as variance in meat production. Age-specific production and consumption curves 

were used to calculate a household’s estimated net need, i.e. total production minus consumption. For more details 

see [S3–S5].  

Horticultural fields and labor: Data on number and size of fields and labor sharing were obtained from annual 

field interviews (n=780) conducted from 2005-2009, the period overlapping with the food production and sharing 

interviews [S3, S4]. Household heads were asked about all fields they had made this year, as well as from whom 

they had received any help in field clearance, tree chopping, burning, weeding, or harvesting, and for how many 

days. Help given to others in field labor was recorded in the same fashion. Payment for labor was recorded as 

money, food, harvest share, labor, labor debt, or unpaid. Here we included the average number of unpaid labor days 

given from household A to household B per year as well as the total size of fields a household made per year. 

Childcare and sick care: Information on childcare and sick care among households came from interviews 

conducted in 2005 and 2006 (n=671), asking heads of households about common forms of shocks such as illness, 

accidents, theft, crop failure, or social conflict, and their buffers against them [S4, S6]. During this interview, people 

were asked to nominate up to three individuals who normally provide them with childcare through questions like 

‘who looks after your children when you go foraging?’, ‘who feeds your children when you go foraging?’, and 

‘where do your children sleep when you go foraging?’, with questions about four contexts (foraging, town visits, 

illness ego, illness spouse) resulting in a large number of possible nominations. While this ensured that anyone 

providing regular childcare was nominated, the questions do not capture frequency of care. Therefore, we used a 

binary measure of childcare measured as any nomination of a member of one household by a member of another 

(except when calculating the ordinal measure used to compile the total helping score; in this case total nominations 

were used to determine whether A gave household B more or less childcare than A gave to the average other 

household). Data on sick care were obtained by asking participants whether they or their spouse had experienced 

illness or accidents in the past three months, or, if not, the last time they did. They were then asked to name people 

who had given them medicinal plants, medicine, money to buy medicine or go to the hospital, fed them or their 

family, or provided any other form of help during these episodes. Similar to childcare, this resulted in a binary 

measure of sick care among households.  

Other variables: Ages were recorded during regular censuses and medical visits as well as demographic 

interviews [S7]. Average degree of relatedness among households was obtained from demographic interviews as 

well as by asking about the relationship between donor and receiver for each instance of help given in the interviews 

described above [S3]. Distance between households (in kilometers) was calculated by applying the spherical law of 

cosines to latitude and longitude coordinates measured with a handheld GPS unit [S3]. 

 

Modeling zero-inflation 

All count data (meat/produce/labor sharing) had a larger number of zeroes than expected under a regular 

poisson process given their means. We therefore initially modeled count data as zero-inflated Poisson distributed 

(with log link), wherein a zero-inflation intercept (with logit link) captures excess zeroes that cannot be modeled as 

part of the Poisson distribution [S8]; the inverse logit of this zero-inflation intercept thus indicates the proportion of 

‘false zeroes’ due to methodological biases, in our case interpretable as dyads that were never observed to cooperate 

but perhaps would have been given a longer sampling period. Interestingly, this proportion of false zeroes was very 

high (~95%) for meat sharing, but diminishingly low (<0.1%) for produce and labor sharing, indicating that our 

sampling period was adequate for the latter but not the former (consistent with the greater variance and 

unpredictability of meat production). Thus, we re-fit produce and labor models using regular Poisson, which is what 

we report. 

 

Model equations 

The full zero-inflated poisson model with random slopes for count commodities (meat, produce, labor) 

given by household i to household j in community c is given by:   

 

𝑌𝑖𝑗𝑐  ~ 𝑍𝐼𝑃 (𝜇𝑖𝑗𝑐 , 𝜁) 



log(𝜇𝑖𝑗𝑐) =  𝑏0 + 𝑏1 ∗ 𝑚𝑒𝑎𝑡𝑗𝑖𝑐 + 𝑏2 ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑗𝑖𝑐 + 𝑏3 ∗ 𝑙𝑎𝑏𝑜𝑟𝑗𝑖𝑐 + 𝑏4 ∗ 𝑐ℎ𝑖𝑙𝑑𝑐𝑎𝑟𝑒𝑗𝑖𝑐 + 𝑏5 ∗ 𝑠𝑖𝑐𝑘 𝑐𝑎𝑟𝑒𝑗𝑖𝑐 + ⋯ +

𝑟𝑖1 ∗ (1 + 𝑟𝑖2 ∗ 𝑚𝑒𝑎𝑡𝑗𝑖𝑐 + 𝑟𝑖3 ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑗𝑖𝑐 + 𝑟𝑖4 ∗ 𝑙𝑎𝑏𝑜𝑟𝑗𝑖𝑐  +  𝑟𝑖5 ∗ 𝑐ℎ𝑖𝑙𝑑𝑐𝑎𝑟𝑒𝑗𝑖𝑐 + 𝑟𝑖6 ∗ 𝑠𝑖𝑐𝑘 𝑐𝑎𝑟𝑒𝑗𝑖𝑐) + 𝑟𝑗 + 𝑟𝑐1 ∗

(1 + 𝑟𝑐2 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗𝑖𝑐)  + 𝑒  

𝑙𝑜𝑔𝑖𝑡(𝜁) = 𝛾 

𝑟𝑖  ~ 𝑁𝑜𝑟𝑚 (0, ∑
𝑑𝑜𝑛𝑜𝑟

) 

𝑟𝑗  ~ 𝑁𝑜𝑟𝑚 (0, 𝜎𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡
2 ) 

𝑟𝑐  ~ 𝑁𝑜𝑟𝑚 (0, ∑
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦

) 

𝑒 ~ 𝑁𝑜𝑟𝑚(0, 𝜎𝑒
2) 

 

Herein 𝜁 is the probability of measuring a false zero (see above, [S8]), 𝜇𝑖𝑗𝑐 the expected value for the count process 

for dyad ij in community c, the subscript ji denotes commodities received, and all random effects 𝑟𝑥 follow a normal 

distribution with mean 0 and variance 𝜎2, covariances are estimated between the random intercept and random 

slopes for donor household i and community c in their respective variance-covariance matrices ∑
𝑑𝑜𝑛𝑜𝑟

 and 

∑
𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦

, and residual variance is soaked up by the additive overdispersion term 𝑒, which is modeled as a 

random intercept for each datapoint [S1, S8]. The regular poisson model is the same but without the zero-inflation 

intercept: 

 

𝑌𝑖𝑗𝑐  ~ 𝑃𝑜𝑖𝑠 (𝜇𝑖𝑗𝑐) 

 

The binomial model for binary data uses the logit link function: 

 

𝑌𝑖𝑗𝑐  ~ 𝐵𝑖𝑛 (𝑝𝑖𝑗𝑐) 

logit(𝑝𝑖𝑗𝑐) =  𝑏0 + ⋯ 

 

with the rest being the same as for the ZIP model. R code for fitting these models with MCMCglmm is available 

from the first author upon request. 

 

Model fitting 

Prior to analysis, collinearity of potential predictor variables was assessed using generalized variance 

inflation factors (gVIF’s [S9], all < 3). Nonlinear effects of predictors were assessed visually by plotting each 

dependent variable against each predictor using a loess smooth [S8]; distance between households had a clear 

convex effect and was consequently logged. All supply and demand variables were transformed into z scores such 

that 0’s represent the population average. 

We placed weak Gaussian priors (mean = 0, variance = 1000) on all fixed effects to improve convergence 

and guard against overfitting [S10]. Variance-covariance components received standard inverse gamma priors in the 

(zero-inflated) Poisson models (increasing the degree of belief parameter to 0.02 for models with random exchange 

slopes) and weak Cauchy priors (variance=1000) in binary models [S1]. As the variances of the zero-inflation 

intercept and the residual variance in binary models cannot be estimated, they were fixed to 1 and 10, respectively 

[S1]. Models were run until the Markov chains converged as assessed visually by plotting time series and 

histograms as well as formally by calculating Potential Scale Reduction Factors (all <1.1) on three runs of the same 

model using the gelman.diag function [S11]. The respective number of iterations, burnin, and thinning interval 

varied depending on the complexity of the candidate model and the distribution; the most complex models were run 

for 250,000 (meat), 100,000 (produce, labor), and 1,000,000 iterations (childcare, sick care) respectively, with a 

burnin of 50,000/10,000/250,000 and a thinning interval of 20/10/50. Chains were sampled using Gibbs sampling 

for (zero-inflated) Poisson models and slice sampling for binary models. R code for all analyses is available from the 

first author upon request. 

 

Standardized coefficients and R
2
: 

We calculated standardized coefficients for the GLMM’s using the method described by Menard [S12], Eq. 

5, in which  

 



𝛽 =
𝑏 ∗ 𝑠𝑋 ∗ 𝑅

𝑠𝑙𝑖𝑛𝑘 (Ŷ)

 

 

with 𝑏 being the parameter estimate, 𝑠𝑋 the standard deviation of the predictor variable, 𝑅 the square root of the 

(marginal) coefficient of determination 𝑅𝑚
2

 (see below), and 𝑠𝑙𝑖𝑛𝑘 (Ŷ) is the standard deviation of the predicted values 

on the scale of the respective link function (log for poisson, logit for binomial).  

We followed Nakagawa and Schielzeth [S2] and the extension by Johnson [S13] for random slope models 

to calculate coefficients of determination for GLMM’s. The marginal coefficient of determination 𝑅𝑚
2 , i.e. variance 

explained by the fixed effects, and the conditional coefficient of determination 𝑅𝑐
2, i.e. the variance explained by the 

fixed and random effects are: 

𝑅𝑚
2 =  

𝜎𝑓
2

𝜎𝑓
2 + 𝜎𝑙

2̅̅ ̅ + 𝜎𝑒
2 + 𝜎𝑑

2 
 

𝑅𝑐
2 =  

𝜎𝑓
2 + 𝜎𝑙

2̅̅ ̅

𝜎𝑓
2 + 𝜎𝑙

2̅̅ ̅ + 𝜎𝑒
2 + 𝜎𝑑

2 
 

 

where 𝜎𝑓
2 is the variance explained by the fixed effects, 𝜎𝑙

2̅̅ ̅ is the mean random effect variance, 𝜎𝑒
2 is the residual 

variance, and 𝜎𝑑
2 is the distribution-specific variance. 

 Two things are worth noting. First, the residual variance 𝜎𝑒
2 cannot be estimated for binary models and was 

therefore fixed to 10 [S1]; this limits the value the denominator can take resulting in relatively high coefficients of 

determination, and by extension standardized coefficients (see above) for the childcare and sick care models. 

Second, to our knowledge no one has extended coefficients of determination to zero-inflated poisson models so we 

applied the regular poisson formula to the meat sharing model.  
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