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ELECTRONIC SUPPLEMENTARY MATERIAL (ESM) for  
“The optimal timing of teaching and learning across the life course”  

by Gurven, Davison & Kraft 
 

 
Section 1. Conceptualizing the estimation of indirect fitness contributions of pedagogical investments 

William Hamilton’s (1966) “force of selection” describes the sensitivity of fitness r (where r is the 
population growth rate) due to an infinitesimal perturbation in a vital rate [1]. It relies on Lotka’s 
renewal equation reflecting the relative fitness contributions of individuals of different ages x (x = 0, 1, 2, 
…, T), assuming stable population growth (eq. S1): 
 
1 = ∑ 𝑒𝑒−𝑟𝑟𝑟𝑟 𝑙𝑙𝑟𝑟 𝑚𝑚𝑟𝑟

𝑇𝑇
𝑟𝑟=0           (S1) 

 
One common way to estimate the force of selection is to take the partial derivative of the population 
growth rate (λ) with respect to perturbations in age-specific survival 𝑝𝑝𝑟𝑟  from age x to x+1 (eq. S2):  
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑝𝑝𝑥𝑥 

= 𝑑𝑑
𝑝𝑝𝑥𝑥 

∑ 𝑒𝑒−𝑟𝑟𝑟𝑟 𝑙𝑙𝑟𝑟 𝑚𝑚𝑟𝑟
𝑇𝑇
𝑟𝑟=𝑥𝑥+1
∑ 𝑦𝑦 𝑒𝑒−𝑟𝑟𝑟𝑟 𝑙𝑙𝑟𝑟 𝑚𝑚𝑟𝑟
𝑇𝑇
𝑟𝑟=0

.         (S2) 

 
Estimating the fitness contributions of pedagogical investments follows the effects of pedagogy on 
lifetime production by individuals age y through surplus production  (Py) and its effects on the 
nutritionally-dependent vital rates underlying population growth via transfers to individuals age x (Fx). 
Through serial sensitivities and the chain rule, we can estimate the indirect fitness contributions of 
surplus production transfers (∂ λ / ∂ Py) using the summed product of four sensitivities: 
 
(1) sensitivities of fitness to fertility (∂ 𝜆𝜆 / ∂ mx) and to survivorship (∂ 𝜆𝜆 / ∂ px) 
(2) the sensitivity of vital rates (mx, px) to food ratio Ex, where Ex  refers to the proportion of optimal 
caloric consumption necessary to maximize fertility or survivorship (e.g. ∂ mx / ∂ Ex). Vital rates are at a 
maximum when Ex = 1, following the approach of Lee & Tuljapurkar [2] 
(3) sensitivity of food ratio Ex to receiving a food transfer (Fx) at age x by individuals age y, based on 
caloric demand across the age structure 
(4) sensitivity of food transfers to an increase in food production, e.g. rules governing the extent of kin-
based production transfers depending on age-specific net production returns Py   (∂ Fx / ∂ Py): 
 
𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕𝑟𝑟

= ∑ 𝜕𝜕𝑑𝑑
𝜕𝜕𝑚𝑚𝑥𝑥

𝜕𝜕𝑚𝑚𝑥𝑥
𝜕𝜕𝐸𝐸𝑥𝑥

𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝐹𝐹𝑥𝑥

𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝜕𝜕𝑟𝑟

𝑇𝑇
𝑟𝑟=0  + ∑ 𝜕𝜕𝑑𝑑

𝜕𝜕𝑝𝑝𝑥𝑥

𝜕𝜕𝑝𝑝𝑥𝑥
𝜕𝜕𝐸𝐸𝑥𝑥

𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝐹𝐹𝑥𝑥

𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝜕𝜕𝑟𝑟

𝑇𝑇
𝑟𝑟=0 .      (S5) 

 
In addition to relying on assumptions about food sharing based on surplus production (∂ Fx / ∂ Py), age-
profiles of unmet caloric demand (∂ Ex / ∂ Fx) and kin-preference (∂ Fx / ∂ Py), this sensitivity to 
production transfers (∂ λ / ∂ Py) depends on assumptions about how food consumption (nutritional 
deficit and surplus) affects fertility and survivorship (∂ 𝜆𝜆 / ∂ mx and 𝜆𝜆 / ∂ px), which are poorly quantified 
in humans, complicating empirical estimation. It is not unreasonable to assume that the norms of 
reaction for survival and fertility with respect to caloric consumption are concave functions, where 
minor deprivation has small effects and severe deprivation has increasingly larger impacts on vital rates.  
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Once we have the fitness sensitivities of production transfers, we can additionally estimate the fitness 
sensitivities of pedagogy by modifying eq. S5. What is needed is to include how a unit of pedagogy (for 
simplicity here represented as time allocation at age z, (tz) impacts surplus food production (Py) by 
increasing knowledge (Ky). The modification of eq. S5 therefore applies the response of production Py to 
skill level Ky (after Gurven and Kaplan [3]) and incorporates the effects of teacher’s pedagogical time-
allocation at age z (tz) on pupil skill Ky at each age y (∂ Ky / ∂ tz):  
 
𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕𝑧𝑧

= ∑ ∑ 𝜕𝜕𝑑𝑑
𝜕𝜕𝑝𝑝𝑥𝑥

𝜕𝜕𝑝𝑝𝑥𝑥
𝜕𝜕𝐸𝐸𝑥𝑥

𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝐹𝐹𝑥𝑥

𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝜕𝜕𝑥𝑥

𝑇𝑇
𝑦𝑦=0 

𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝐾𝐾𝑟𝑟

𝜕𝜕𝐾𝐾𝑟𝑟
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𝑇𝑇
𝑟𝑟=0 +∑ ∑ 𝜕𝜕𝑑𝑑

𝜕𝜕𝑚𝑚𝑥𝑥

𝜕𝜕𝑚𝑚𝑥𝑥
𝜕𝜕𝐸𝐸𝑥𝑥

𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝐹𝐹𝑥𝑥

𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝜕𝜕𝑥𝑥

𝑇𝑇
𝑦𝑦=0 

𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝐾𝐾𝑟𝑟

𝜕𝜕𝐾𝐾𝑟𝑟
𝜕𝜕𝜕𝜕𝑧𝑧

𝑇𝑇
𝑟𝑟=0 ,   (S6) 

 
 
Where (∂ λ / ∂ tz) is Hamilton’s force of selection expressed as the change in population growth rate, or 
fitness, due to one year of pedagogical or informational “transfer” at age z (tz). This is a product of five 
terms: (∂ λ / ∂ px and ∂ λ / ∂ mx) are the traditional vital rate sensitivities reflecting fitness responses to 
changes in fertility or survivorship at age x; (∂ mx / ∂ Ex  and  ∂ px / ∂ Ex) describe nutrition effects 
reflected in fertility and survivorship changes through caloric consumption; (∂ Ex / ∂ Fx) addresses the 
change in food ratio Ex as a result of food transfers Fx to individuals age x stemming from net surplus 
production by individuals age y (Py); (∂ Fx / ∂ Py) incorporates food sharing strategies for distributing 
transfers across age classes; (∂ Py / ∂ Ky) reflects knowledge- or skill-effects on production; (∂ Ky / ∂ tz) 
refers to how subsistence knowledge Ky at age y changes with information transfers tz by individuals age 
z.  
 
In our framework, information transfers alter the traditional fitness contributions of mortality and 
fertility to reflect the impacts of teaching on food production across the life cycle and their concomitant 
effects on population fitness through the nutritional dependence of vital rates. The estimation of fitness 
contributions from pedagogy in human and other social animals is currently under investigation. The 
current paper contributes to this broader goal by helping to understand and operationalize the last two 
elements of eq. S6: changes in production due to increased knowledge or skills (∂ Py / ∂ Ky), and changes 
in subsistence knowledge due to information transfer (∂ Ky / ∂ tz).  
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Section 2. Additional methodological detail on teacher cost estimation in human hunting.  
 
The extensive cross-cultural hunting database recently compiled by Jeremy Koster and colleagues 
includes >23,000 records of 1,800 individuals from 40 locations [4]. As noted in the main text, for our 
analyses we used two separate methods to identify cases of potential teaching in this database. The 
difference between these methods comes from an explicit distinction made by the primary architects of 
the data set between primary foragers and assistants on hunting expeditions. Specifically, primary 
foragers were denoted as individual or cooperative hunters who sometimes pooled harvests and were 
active in decision-making and direct pursuit/capture of prey, whereas an additional category, termed 
“assistants,” was defined as individuals on hunting trips “to whom harvested biomass cannot be 
credited.” In most cases assistants were young or old individuals who accompanied foraging trips 
without technology or implements that would allow active participation in hunting. For each of these 
categories, we generated a binary variable of potential teaching and conducted analysis as follows.  
 
For the first case (cooperative hunts between primary foragers), we focused only on cases of 
cooperative hunts (more than 1 primary forager on a hunting trip) and distinguished cases in which at 
least one forager of age <20 years old (other than the focal forager) was part of a hunting group. Given 
this focus, we first excluded any societies from the data set for which no cooperative hunting instances 
were observed (we expect that this indicates that cooperative hunting was not recorded or coded, or if 
truly absent indicates that a given society is not relevant to the analysis), and removed any cases of solo 
hunting. Each row of the data set was therefore comprised of a person-hunt observation for cooperative 
hunts, with separate rows for each forager in the hunting group and outcomes noted at either the 
individual or pooled level. If at least one other forager in the group was <20 years old, then a focal 
hunter would have 1 assigned for potential teaching, and a 0 if not.  
 
For the second case (hunts with or without the presence of assistants), we started by reducing the 
overall data set to only those societies for which the explicit presence of assistants was noted at least 
one time (due to the fact that several of the original ethnographers did not include such observations in 
their records). For each row, which represents a single person-hunt observation, we then calculated the 
number of individual assistants reported with ages of <20 years old (to remove cases of older individuals 
who likely joined hunts as assistants for non-pedagogical reasons). Because so few cases included more 
than one potential teaching assistant, we then reduced this to a binary variable indicating the presence 
of at least one potential teaching assistant. Prior to analysis, we further excluded observations of groups 
with party size >5 and individuals >75 years old (very few data were reported in this age range and thus 
estimation of smoothing splines performed poorly past this point).      
 
Hunting data often has a high prevalence of zeros and a high degree of right-skew among non-zero 
outcomes, and thus such data are amenable to the use of zero-adjusted gamma (or alternatively 
lognormal) models [5]. Here we used Bayesian estimation in R with the packages brms and rstan to fit a 
multilevel lognormal hurdle model of hunting returns as a function of each teaching variable (presence 
of young primary foragers in group or presence of young assistants), age (modeled with a thin-plate 
smoothing spline), and adjusting for a pooled harvest, sex, the use of guns, foraging party size, hunting 
trip duration, use of dogs, and an interaction between pooled harvest and party size. Individual and 
population were modeled as with random intercepts to account for hierarchical clustering at these 
levels. If y is an indicator variable for a non-zero hunting return, and h is the continuous value of non-
zero harvests, then the model is of the following form: 
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𝑦𝑦𝑖𝑖  ~ 𝐵𝐵𝑒𝑒𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙𝐵𝐵(𝑝𝑝𝑖𝑖) 
 

ℎ𝑖𝑖 ~ 𝐿𝐿𝐵𝐵𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝑚𝑚𝐿𝐿𝑙𝑙(𝜇𝜇𝑖𝑖,𝜎𝜎) 
 

logit(𝑝𝑝𝑖𝑖) = 𝛼𝛼𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑙𝑙[𝑖𝑖] + 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑒𝑒𝜕𝜕𝑦𝑦[𝑖𝑖] + 𝑠𝑠1(𝐿𝐿𝐿𝐿𝑒𝑒𝑖𝑖) + 𝛽𝛽1𝑡𝑡𝑒𝑒𝐿𝐿𝑡𝑡ℎ𝐵𝐵𝐵𝐵𝐿𝐿𝑖𝑖 + 𝛽𝛽2𝑠𝑠𝑒𝑒𝑠𝑠𝑖𝑖 + 𝛽𝛽3𝑡𝑡𝐵𝐵𝐵𝐵𝑝𝑝_𝑑𝑑𝐵𝐵𝐵𝐵𝐿𝐿𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖
+ 𝛽𝛽4𝑑𝑑𝐵𝐵𝐿𝐿𝑠𝑠𝑖𝑖 + 𝛽𝛽5𝐿𝐿𝐵𝐵𝐵𝐵𝑠𝑠𝑖𝑖 + 𝛽𝛽6𝑝𝑝𝐵𝐵𝐵𝐵𝑙𝑙𝑒𝑒𝑑𝑑𝑖𝑖 + 𝛽𝛽7𝑝𝑝𝐿𝐿𝐵𝐵𝑡𝑡𝑦𝑦_𝑠𝑠𝐵𝐵𝑠𝑠𝑒𝑒𝑖𝑖 + 𝛽𝛽8𝑝𝑝𝐵𝐵𝐵𝐵𝑙𝑙𝑒𝑒𝑑𝑑𝑖𝑖 ∗ 𝑝𝑝𝐿𝐿𝐵𝐵𝑡𝑡𝑦𝑦_𝑠𝑠𝐵𝐵𝑠𝑠𝑒𝑒𝑖𝑖  

 
𝜇𝜇𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑙𝑙[𝑖𝑖] + 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑒𝑒𝜕𝜕𝑦𝑦[𝑖𝑖] + 𝑠𝑠2(𝐿𝐿𝐿𝐿𝑒𝑒𝑖𝑖) + 𝛽𝛽9𝑡𝑡𝑒𝑒𝐿𝐿𝑡𝑡ℎ𝐵𝐵𝐵𝐵𝐿𝐿𝑖𝑖 + 𝛽𝛽10𝑠𝑠𝑒𝑒𝑠𝑠𝑖𝑖 + 𝛽𝛽11𝑡𝑡𝐵𝐵𝐵𝐵𝑝𝑝_𝑑𝑑𝐵𝐵𝐵𝐵𝐿𝐿𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 + 𝛽𝛽12𝑑𝑑𝐵𝐵𝐿𝐿𝑠𝑠𝑖𝑖

+ 𝛽𝛽13𝐿𝐿𝐵𝐵𝐵𝐵𝑠𝑠𝑖𝑖 + 𝛽𝛽14𝑝𝑝𝐵𝐵𝐵𝐵𝑙𝑙𝑒𝑒𝑑𝑑𝑖𝑖 + 𝛽𝛽15𝑝𝑝𝐿𝐿𝐵𝐵𝑡𝑡𝑦𝑦_𝑠𝑠𝐵𝐵𝑠𝑠𝑒𝑒𝑖𝑖 + 𝛽𝛽16𝑝𝑝𝐵𝐵𝐵𝐵𝑙𝑙𝑒𝑒𝑑𝑑𝑖𝑖 ∗ 𝑝𝑝𝐿𝐿𝐵𝐵𝑡𝑡𝑦𝑦_𝑠𝑠𝐵𝐵𝑠𝑠𝑒𝑒𝑖𝑖  
 
Where s1 and s2 are thin-plate regression splines formulated in the mgcv package, “teaching” is a binary 
variable associated with the presence of young assistants or young group members in cooperative 
foraging, “pooled” is a binary indicator variable of whether or not the outcome reflects a pooled harvest 
among multiple individuals, “trip_duration” is the length of foraging trip in hours, “dogs” is a binary 
variable indicating the presence of hunting dogs, “guns” is a binary variable indicating the use of 
firearms by the focal individual, “sex” indicates male versus female hunters, and “party_size” is a 
numeric variable indicating the number of primary foragers in the group. Non- or weakly-informative 
priors were used for all parameters. 
 
Because a small number of observations were missing data on the use of dogs, guns, or trip duration, we 
employed multiple imputation using the mice package in R and ran the same fitted model on n=5 
imputed data sets. Bayesian methods are convenient because posterior values can be combined from all 
models to produce a single posterior that accounts for variation from multiple imputation. We assessed 
chain convergence and mixing by visual inspection of trace plots, as well as the Gelman-Rubin diagnostic 
𝑅𝑅� and effective sample size (calculated by brms and rstan). All parameters exhibited 𝑅𝑅� values less than 
1.01, with acceptable effective sample sizes and good mixing. Here we present only a single model, but 
note that other model formulas, such as those that allowed for an interaction between our teaching 
variables and age or a third-order polynomial for age, were considered and produced qualitatively 
equivalent results.  Full reproducible R code that loads data from the original source [4] is available at 
https://osf.io/38624/. 

 
 
Section 3. Additional methods detail on human hunting and age of teaching. 
 
The hunting database from [4] also conveniently provides information on the age profiles of hunting as 
it pertains to different group compositions. We conducted two separate analyses of group composition. 
For the first, we constructed a binary outcome variable indicating whether a person-hunt observation 
was an independent solo hunt (1) or part of a cooperative group hunt (0). For the second, we used the 
same variable described above indicating whether a cooperative hunt included a young (<20 years old) 
group member. 
 
For each outcome variable we specified a multilevel model with a Bernoulli distribution (binomial 
distribution with ntrials = 1 for each observation) for the response and a logit link function, estimating the 
response as a function of a third-order (orthogonal) polynomial of age, the use of dogs, and the use of 
guns, with random intercepts for individual forager and society: 
  

https://osf.io/38624/
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𝑦𝑦𝑖𝑖  ~ 𝐵𝐵𝑒𝑒𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙𝐵𝐵(𝑝𝑝𝑖𝑖) 

logit(𝑝𝑝𝑖𝑖) = log �
𝑝𝑝𝑖𝑖

1 − 𝑝𝑝𝑖𝑖
� = 𝛼𝛼𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑙𝑙[𝑖𝑖] + 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑒𝑒𝜕𝜕𝑦𝑦[𝑖𝑖] + 𝛽𝛽0𝐿𝐿𝐿𝐿𝑒𝑒𝑖𝑖 + 𝛽𝛽1𝐿𝐿𝐿𝐿𝑒𝑒𝑖𝑖2 + 𝛽𝛽2𝐿𝐿𝐿𝐿𝑒𝑒𝑖𝑖3 + 𝛽𝛽3𝑑𝑑𝐵𝐵𝐿𝐿𝑠𝑠𝑖𝑖 + 𝛽𝛽4𝐿𝐿𝐵𝐵𝐵𝐵𝑠𝑠𝑖𝑖 

𝛽𝛽0 ~ 𝐿𝐿𝐵𝐵𝐵𝐵𝑚𝑚𝐿𝐿𝑙𝑙(0,10) 
𝛽𝛽1 ~ 𝐿𝐿𝐵𝐵𝐵𝐵𝑚𝑚𝐿𝐿𝑙𝑙(0,50) 
𝛽𝛽2 ~ 𝐿𝐿𝐵𝐵𝐵𝐵𝑚𝑚𝐿𝐿𝑙𝑙(0,50) 
𝛽𝛽3 ~ 𝐿𝐿𝐵𝐵𝐵𝐵𝑚𝑚𝐿𝐿𝑙𝑙(0,10) 
𝛽𝛽4 ~ 𝐿𝐿𝐵𝐵𝐵𝐵𝑚𝑚𝐿𝐿𝑙𝑙(0,10) 
𝛼𝛼𝑗𝑗 ~ 𝐿𝐿𝐵𝐵𝐵𝐵𝑚𝑚𝐿𝐿𝑙𝑙(𝛼𝛼�,𝜎𝜎𝛼𝛼) 
𝛾𝛾𝑗𝑗  ~ 𝐿𝐿𝐵𝐵𝐵𝐵𝑚𝑚𝐿𝐿𝑙𝑙(0,𝜎𝜎𝛾𝛾) 

𝛼𝛼� ~ 𝑆𝑆𝑡𝑡𝐵𝐵𝑑𝑑𝑒𝑒𝐵𝐵𝑡𝑡𝑆𝑆(3, 0, 10) 
𝜎𝜎𝛼𝛼  ~ 𝑆𝑆𝑡𝑡𝐵𝐵𝑑𝑑𝑒𝑒𝐵𝐵𝑡𝑡𝑆𝑆(3, 0, 10) 
𝜎𝜎𝛾𝛾 ~ 𝑆𝑆𝑡𝑡𝐵𝐵𝑑𝑑𝑒𝑒𝐵𝐵𝑡𝑡𝑆𝑆(3, 0, 10) 

 
Where y is a vector of binary outcomes indicating whether an observation is a solo hunt (first model) or 
whether or not a cooperative hunting observation was part of a group where at least one other 
individual was young (second model). For the model of young group members on cooperative hunts, we 
additionally included a variable for the number of primary foragers to account for the fact that a larger 
group is more likely to include at least one young member. Multiple imputation was performed and 
model diagnostics and convergence were assessed as described previously. Code is available at 
https://osf.io/38624/. 
                       
Section 4. Additional methods detail on ages of teacher-student dyads among Tsimane Amerindians. 
 
To assess the age profiles of potential teacher-student dyads, we used a scan sampling database on 
Tsimane forager-horticulturalists comprised of 70,745 observations. For a relatively small number of 
these observations (n=3551), the activity of individuals was recorded in the behavioral category of 
“accompaniment,” in which the focal participated as part of the activity or social group of others 
engaged in productive activities. This behavioral category is therefore essentially equivalent to the 
“assistant” category described above for the data in [4]. For each instance of accompaniment, we 
identified all of the individuals engaged directly in the primary activity as well as all of the individuals 
noted to have accompanied them. Accompanying individuals were further filtered to include only those 
of age <20 years old in order to identify individual assistants who were potential targets of pedagogy. 
We then used this information to construct a database of all observed teacher-student (forager-
assistant) dyads. Because repeated behavioral scans were conducted over the course of single days, we 
filtered observations to include only a single instance of an activity group on each day (e.g. if person A 
hunted with assistant B on day 1, and there were 6 observations of this activity group between 1 pm and 
3 pm, this group would appear only as a single row indicating one dyad observed on day 1). Each row 
was also assigned a macro-activity code (fishing, agriculture, other foraging (fruit/honey collection), 
hunting) based on the activity of the primary forager of each dyad. To produce Figure 7, we calculated 
the unweighted mean age of students and teachers for each macro-activity category and calculated 
bootstrapped 95% confidence intervals using the boot package in R. 
 
In addition to investigating the age profiles of dyads involving foragers and assistants, we also examined 
the age profiles of cooperative foraging dyads. The key difference is that in the latter case multiple 
individuals were part of the same working group and all individuals were listed as participating directly 
in the main activity (rather than some individuals having received the behavioral code for 

https://osf.io/38624/
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“accompaniment”). Thus, these dyads represent cooperative partnerships in which both individuals can 
be considered as primary foragers. 
 
After identifying all pairwise cooperative foraging dyads, we repeated the procedures described above 
to reduce observations to include only a single instance of an activity group on each day, and calculated 
means and bootstrapped 95% confidence intervals of ego and alter ages for the following: 1) macro-
activity categories (fishing, gardening (horticulture), hunting, other foraging (fruit/honey gathering); 2) 
sub-categories of fishing (bow and arrow, hook/line, net, poison); 3) sub-categories of horticulture (tree-
chopping, clearing (with machete), harvesting, planting). These relationships are plotted in Fig. 7.  
Instead of focusing on only mean ages of teachers and pupils (which itself is not independent of the age 
structure of the population), Figure S7 compares the distribution of teacher and pupil ages for 
horticulture and hunting using a kernel density plot. Though showing similar mean ages for teacher and 
pupil ages in Figure 7a, horticultural activities involve a higher density of individuals at young ages (<15 
yo) while hunting includes an extended range of egos and alters. 
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Table S1. Examples of animal teaching from Thornton & Raihani [6]. Life history traits for animals with teaching as evidenced by teachers 
altering behavior in the presence of pupils. For each species examined by [6], we provide common name, Latin name, the type of behavior 
reported, whether behavior was altered (evidence of teaching), evidence of apparent costs or benefits to teaching. To these we add life history 
traits: life expectancy (e0), age at maturity/first birth (AFB), the proportion of the lifespan after maturity [Pr(mat) = (e0 - AFB) / e0]. Except for 
chimpanzees, where life history traits are taken from [41], lifespan and maturity measures are taken from https://animaldiversity.org/. 
 

 
  

https://animaldiversity.org/
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Table S2. Model variable definitions. 
 

 
 
 
 
Table S3. Life cycle for model construction.  
 

 

 
  

Stage Start (x) End (x) Stages θ φ Phases θ φ
1 0 a -1 Pre-Pupil Current None Pre-Pupil Current None
2 a b -1 Pupil Residual None Pupil Current None
3 b a +t Post-Pupil Residual None Pupil/Teacher Residual Current
4 a+t+1 b +t Teacher Residual Current Teacher Residual Current
5 b +t +1 T Post-Teacher Residual None Post-Teacher Residual None

Age OverlapNo Overlap
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Fig. S1. Strength and skill requirements of subsistence activities. (a) Stylized ontogenies for 
strength (Sx) and skill (Kx) by age [sensu 3]. (b) Life cycle production (Px = Sxα Kxβ) of four stylized 
subsistence activities combining high (H) or low (L) requirements for strength (S) and skill (K) 
(e.g. LS/LK for low-strength/low-skill), with production determined by the exponents α and β 
[3]. For low/high strength: α = 0.1 / 0.7; low/high skill: β = 0.1 / 0.7. (c) Stable population 
production contributions (Cx = Px lx) made at each age x are discounted by survivorship (lx, blue 
line). 
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Fig. S2. Age profiles of production as a function of strength and skill requirements. The top row (a-c) 
shows production when skill requirements are fixed (low or high) but strength requirements vary (0 < α 
< 1); bottom row (d-f) shows production when strength requirements are fixed but skill requirements 
vary (0 < β < 1). Bold black lines show the highest strength (α = 1) or skill (β = 1) requirement in the 
series. Rightmost column (c, f) shows the effects of skill (or strength) by subtracting the low skill (or 
strength) production from the high skill (strength) production. Production deficits in high- vs. low-skill 
contexts are concentrated at younger ages (<30, where skill is low) but at older ages (>30) high-skill 
production is higher; deficits in high- vs. low-strength context are evident at both young ages (<20) and 
older ages (>40) and it is prime-age adults (ages 20-40) who produce more via high-strength activities.   
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Figure S3. Effects of pedagogy on age at skill mastery. Age at mastery (xK*, z-contours) for a given 
pedagogical context (here, θ = 25%-100%, t = 10y) responds to age at pupil onset (a, x-axis) and age at 
teacher onset (b, y-axis) (here, shown for high strength, high skill activities). Optimal age of teacher (b*) is 
between ages 30 to 40, whereas optimal age of pupil depends on any constraints on student learning. With 
no constraints, learning should occur early when the rate of skill acquisition is fastest at age 7 (top row). If 
pupils benefit more from teaching when they already have some skills, then the optimal age of pupil onset 
occurs at later ages (age 21, bottom row). Note: in these examples, skill mastery occurs at age 59 with no 
pedagogy (baseline/maximum xK*), and we examine only pairings in which the teacher is older than the pupil 
(note the absence of contours below and to the right of the bold black age-parity line). Optimal ages of 
teacher and student are similar across columns, despite varying θ, which decreases the age at mastery, but 
optimal pupil ages are older when some pupil skill is necessary to benefit from pedagogy.  
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Figure S4. Effects of teacher age on age at mastery (based on Fig. S3). Mastery is attained at the youngest 
ages (xK*) when the pupil boost (θ) is high, but responds nonlinearly to age of teacher onset (b). When 
teachers begin instruction early (e.g. b=20, left column), age of pupil mastery is later because teachers are 
not yet very skilled (note that we do not examine conditions where teachers are younger than pupils). When 
teachers begin instruction late (e.g. b=60, right column), mastery also occurs later, because of mortality 
attrition limiting availability of teachers at those ages. If pedagogical effects on skills ontogeny only depend 
on teacher age (b), mastery is attained earliest when pupils begin instruction at the age where the rate of 
learning is highest (a* = 7) but if skills ontogeny also depends on pupil skill levels during instruction 
(reflecting pupil preparedness), optimal pupil ages are later (a*= 21). 
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Figure S5. Production effects of pedagogy. For different teacher handicaps (φ = 1%, 5%, 10% panel 
columns), production responds to pupil onset (a, x-axes), teacher onset (b, y-axes), skill requirements (β) 
and strength (α) requirements (rows). Production (z-contours) is scaled relative to baseline production 
without pedagogy (bold contour at PT* / PT = 1.0) and we do not examine pairings where teachers are 
younger than students (b>a, bottom right triangle). For ease of comparison all scenarios apply maximal 
10 years of instruction (t = 10) with equally strong pupil boost (θ = 100%). 
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Interpretation of Production effects shown in Fig. S5: 
1. Low-skill activities favor peer-tutoring when teaching costs are low and elder instruction when 

teaching is costly. High strength requirements also make elder teaching more favorable because 
strength-related production declines, thereby reducing opportunity costs. 

2. Pupils learning high-skill activities benefit from pedagogy across the life cycle, and by teachers of 
a broader range of ages, but under a more stringent set of conditions. When teaching costs are 
relatively high, prime-age producers should never teach. Whereas low-skill activities favor peer 
tutoring or elder instruction, high-skill activities favor teaching by elder peers (5-10 years older 
than pupils) who still haven’t reached peak production and by adults just past prime production. 
As with low-skill activities, high strength requirements favor older teachers, especially when 
handicaps are strong.  

3. Peer tutoring and social learning of low-strength/low-skills activities is consistent with 
chimpanzee-human comparisons showing little teaching in chimpanzee subsistence and costly 
teaching in humans. 
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Figure S6. Optimal teacher age. Given pupil age at onset (a, x-axes), lines show optimal teacher age at onset 
(b*, y-axes) for different teacher handicaps (φ, lines in legend) assuming students double their learning rate 
(pupil boost θ = 100%) over maximal ten years of instruction (t = 10). Thresholds indicate peak age of 
production (solid line), baseline at mastery (peak skill, dashed line) and the maximum age we allowed for 
teachers (dotted line).    
 

 
 
Interpretation of Figure S6: 

a) Low Skill/Low Strength - Peer instruction is optimal if teaching costs are low but under higher 
costs, peer instruction is optimal for only young pupils below a threshold age 

b) Low Skill/High Strength – If teacher costs are low, peer instruction is optimal for young pupils 
below a threshold age; if costs are moderate, peer tutoring is optimal up to a certain age of 
pupil after which (oldest) elder instruction is optimal; if costs are high, teaching is not favored 

c) High Skill/Low Strength – Peer tutoring of young pupils is favored even if teacher costs are high. 
Low costs favor elder peers (~5y older than pupil), moderate costs favor switching to (oldest) 
elder instruction, high costs favor switching to elder instruction for younger pupils. 

d) High Strength/High Skill – Peer tutoring of young pupils is favored under high teacher costs; if 
costs are low, elder peer-tutors (5-10y older than pupil) are favored for older pupils than for L/H 
activities. Higher costs favor switching to elder instruction for older pupils but not the oldest 
elders (except for older pupils), showing how in a H/H economy elders are eligible for teaching 
at earlier ages due to their high skill but production declines from strength.  
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Figure S7. Kernel density plot of cooperative foraging partnerships for hunting and horticulture. These 
activities have similar mean values for ego and alter age (shown in Fig. 7a), but differ in overall 
distributions, with horticultural activities involving a higher density of individuals at young ages (<15 yo) 
and hunting including an extended range of egos and alters. 
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